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PROXIAMTE LINEAR PROGRAMMING:

AN EXPERIMENTAL STUDY OF A MODIFIED SIMFLEX ALGORITHM

FOR SOLVIAUG LI;i,_AR PROGRAM.S WITH INEXACT DATA

F. J. GouZd'

1. Introduction

In recent years linear programming has become an enormously important and

widely used tool for solving a variety oi problems encountered in the practice

of operations research. The original Simplex method (which we henceforth refer

to as the ordinary method) as presented by Dantzig [2] is a robust algorithm

which comprises the basic architecture of many commonly used linear program-

ming codes. For other early contributions, see Charnes [1] and Dantzig,Orden

and Wolfe [3]. Prominent empirical studies, authored by Wolfe and Cutler [6],

and Kuhn and Quandt [4], have compared and reported upon certain variants of

the ordinary method. These reported results concern the effects of alternative

rules for such features as choice of the pivot element, choice of the fnrm of

the inverse, choice of the phase 1 procedure, etc. Ali advanced exposition of

various extensions appears in Orchard-Hays (5].

At the present time, though the ordinary Simplex method is considerabl.'

efficient, It is nevertheless true that efforts to solve large problems are

typically expensive, and new frontiers in linear prugramming can be identified

with attempts to hasten convergence to optimal solutions of such problems. In

I Department of Statistics and Curriculum in Operations Research and Systems

Analysis, University of North Carolina at Chapel Hill. This work was sponsored
in part by the Office of Naval Research, Contract No. N00014-67-A-0321-0003.
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this paper we explore a particular approach to achieving greater efficiency for

large scale problems. In particular, a new variant of the ordinary Simplex

method is proposed as a possible algorithm for solving a newly defined class

of large inexact problems.

AF a starting point, we note that in linear programming applications it is

not highly unusual for the aata of the problem to be inexact. There are many

causes for imprecision of data. Some classes of real world problems in fact

appear to be imrgervious to the analyst's most ponderous efforts to cast them

into a precise optimization model. Such problems often represent large scale

decision models of systems with a highly diffuse and even tentative or specu-

lative structure. The purpose of the model is frequently to enable a decision

maker to gain insight for purposes of gross planning, explore tradeoffs, and

merely ifrprove rather than gain optimality. The very notion of sharp optimi-

zation may be a matter of forensics - at least within the limits on the pre-

cision of the data. Linear programs of this nature might descriptively be

dubbed as "proximate linear programs". In spire of this special quality of

imprecision in many of our models, and in spite of its inevitable accentuation

with the growing interest in social and urban problems, the prepotency of the

engineering disciplines has continued to almost completely shape the mode of

inquiry in rigorous operations research. Looking at a special class of large

scale imprecise problems - linear programs with tolerances in some of toe

data - it is the objective of this study to attempt to develop an algorithm

which might intelligently recognize and exploit the special structure afforded

by inexact data. In short, it was hoped that an algorithm could be developed

which would tend to be more efficient than the ordinary Simplex method when

the problem data are inexact, and which would reduce to the ordinary meLhod

when the data are precise.
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To define the goal more explicitly, assume that the right hand sides of

the given problem are known only within certain user specified tolerances. Let

E be a vector and let the implied right hand side windows be denoted by

b t c. All other problem data are assumed to be exact. Our goal, then, is to

develop an efficient algorithm for solving the proximate problem: find a non-

negative x* such that, for some b in the rectangle [S-s, G+E],

(i) Ax* S b, and

(ii) cTx* a CTx for every nonnegative x such that Ax • b.

It has been our experience that optimization theorists tend to have dif-

ficulty in catching the unfamiliar flavor of this problem. Analysts have an

irresistable tendency to be greedy, and the typically encountered question is,

"1hy not use the right hand side U + c and get the maximum possible return?"

The point here is that in theground rules for the model under consideration

the right hand side is not a policy variable under the analyst's control. It

is an exogenous "fuzzy"' parameter, and the value B + E is no more worthy of

consideration than any other value in the rectangle (b-c, el]. Consequently,

we propose an effort which capitalizes upon ignorance. We wish to solve the

linear program with the assumption of some underlying b e [b-c, 6+E], with

indifference as to which one, with an algorithm which hopefully can economizp:

on consumpticn of computer time. The algorithm proposed in this paper is

heavy handed in the sense that it relies vpon well known ideas. It is a modi-

fication of the ordinary Simplex method which reduces to the latter when all

1 There may be other immediate applications for such an algorithm as

opposed to direct attack of an imprecise problem. For example, suppose the
ultimate objective of a study is to do a sensitivity analysis over a range of
right hand sides. The proposed algorithm could generate a fast optimal
solution for some right hand side in the range. Post optimality analyses can
then be done. See the appendix for other possible applications.
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tolerances are zero (i.e., when the right hand side data are exact). It is

not possible at this writing to state whether or not the objective of increased

efficiency has been realized with any generality over many classes of pro-

grams. Initial computational results indicate

Ui) the method appears to differ insignificantly (in terms of compu-

tation time) from the ordinary Simplex method for A matrices of size

25 x 25, with tolerances up to ±30%.

(ii) With A matrices of size 100 x 100, 200 x 150 and 100 x 200,

when the Simplex method is applied to Ax S b, and when the modified method

is applied to Ax :< b, b-E < b !5 b÷c, there are obvious differences in compu-

tation time. With tolerances (e) of roughly 30% the modified method

appears to reach optimality in 30 to 70 per cent of the amount of time taken

by the ordinary method, the realized reductions being dependent upon the

sparsity and the percentage of negative coefficients in A. In this case,

objective values between Simplex optimality and modified optimality tend to

differ relatively by average amounts of 2 to 10 per cent.

These results and others are )resented in detail in the final section of

the paper. It will be obvious that the modified method requires, on the

average, far fewer pivots than the ordinary Simplex algorithm. However, each

pivot requires more work. It tentatively appears that performance of the me-

thod improves with problem size, is better for positive A matrices, and is

not helped by sparseness. It should be stated that while our computational

experience is at present far too limited to draw any conclusions, there would

seem to be adequate justification for further empirical inquiry into the use-

fulness of the modified method, expecially as regards the performance on

large problems. Also, theoretic possibilities exist for allowing tolerances

in the other data of the problem, for improving phase 1, for further improving

or modifying the proposed technique for tolerances in the right hand sides
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(e.g., building in a procedure for equality constraints), and for applying the

proposed technique to other contexts. Several such applications are discussed

in the appendix to this paper.

It may be helpful at the outset to make a rough descriptive comparidon

between the method to be advanced and the ordinary Simplex method. Consider

the volytope given by Ax ! bl, x 2 0, and the larger containing polytope

given by Ax • b2, x _ 0. These two polytopes define the proximate problem

of interest. In ot* context, given a mean for the right hand side interval,

say b, and given a vector of tolerances, say e, we shall have

bI = S-c 5 b ! G+c = b2. We begin with a phase 1, if necessary, on the poly-

tope Ax S bl, x > 0, in order to find an initial extreme point, say EO.

Beginning at EO the ordinary Simplex method would change basis by ex-

changing 2 columns. The column to be entered distinguishes an edge. The

column to be removed is chosen in such a way that, speaking geometrically,

there is a motion along the distinguished edge from E to an adjacent ex-a 0

treme point E1 . In the modified method one will also change basis by ex-

I changing 2 columns. The column to be entered is chosen as in the ordinary

Simplex method, thus distinguishing the same edge. (A criterion other than

the ordinary entry criterion could be used.) However, the remove column is

not necessarily chosen so as to step to an adjacent extreme point. Rather, it

is chosen according to the criterion: Take as large a step (along the dis-

tinguished edge) as possible to a new basic solution with the following

properties

(1) the activities xj, j = 1,...,n must remain nonnegative

(ii) the nev solution may be infeasible with respect to any subset of the
i7ight hand sides b1i, but not with respect to any of the right hand
sides b 2 1; that is, the new solution may violate some of the con-
straints with right hand side bli, and hence lie outside the poly-
tope Ax ! bl, x ; 0, but it must not be outside the polytope
Ax S b2 , x Ž 0.
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(In general, such a basic solution will lie past the extreme point adjacent to

EO.. Consequently, we achieve greater increase in the objective function.) At

this new basic solution, the violated bhi right hand sides are translated to

b 2 values. We then are at an extreme point, say of the polytope

m
a..x. b iEN

j=l ij ' li'

a.. x. 5 ib N2
j=l1 -

x O 0

where N2 indexes the constraints which have been assigned the new right hand
A

side value b2 . Beginning, then, from E, the same method is repeated to
A

obtain a new point 9 which will be an extreme point of some (possibly new)

polytope. At each extreme point the sets N1 and N2 are updated as re-

quirpd. Initially, at point E0, in the case where all constraints have tol-

erances, the set N1 indexes all the constraints and N2 is empty. (The

procedure, however, will allow some of the constraints to be exact. If they

are all exact, the method reduces to the ordinary Simplex method.) As the al-

gorithm repeats, the indices tend to transfer from the set NI to the set

N 2 At some stages the sets may remain thý. same. Computational experience

indicates that large transfers from N to N2 tend to occur early in the

game as opposed to later. Also, as expected, larger tolerances encourage

larger transfers and better performance for the modified method. Figure 2

provides a sketch of the geometry of the new method.
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2. Notation

L(,t A be an m ) X1 matrix with columns PV P2 9 "" P . Let b be

mn
in R , c in R , and let c denote a given nonnegative rn-vector of toler-

ances (for example, the co;aponents of c may be given by ci = .20bi). The

problem to be solved is

P: find nonnegative x* E Rn such that for some b E (b-t, S*c]

(i) Ax* -< b, and

(ii) cTx* > cTx for every x Ž0 O such that Ax < b.

An; such x* will be called an optimal solution to P.

Let X = {1,2, ... ,n} denote the indices of the activities and let

S = ,n+l_.. n+n.}i be the set of slack indices. Let the fuzzy slacks be in-

dexed by F = {icS: i. > 01, and let the exact slacks be indexed byi-n

E = S-F. Let h= b - c, b2 = b + c, and let B be the nonnegative

na-vector given by =2 - bI = 2E_

A
Let A denote the A matrix augmented in the usual way with an m x m

A
Ldentity niotrix and donote the last m columns of A as P n+l''''Pn+m" A

Abasis, say B, will correspond to m columns of A, say P1 ' PI "'* P"
1 2' m

Corresponding to each basis B will be a point in Rn with basic coordinates

xB = (x 1 xI2 )". /onbasic coordinates are always assigned the value

zero. Also, corresponding to each basis, D, is a tableau with rows indexed

fron I to - , " and couinus:, indexed from 0 to m + n. The entries of

the zero column of the tahl2e;u corre';ponding to B are defined by x = x

j x. .. ,;X+lO = cb xB. The entries in the remaining columns, excluding

the last rcw:, are given by the coefficients xij in the expressions

P. = x P j + m. ., n e last row of the tableau, excluding
ji 1= ij I

XA+l ,O consists of the usual reduced costs.



In the method to be described, as in the ordinary Simplex method, a

basis B will be replaced with a basis 9 by a simple exchange. That is,
th

some vector PI (corresponding to the r row) is replaced by a vector
r

Pe. Thus, the new basis 9 is given by P P^1P "",P where fr - e

and I. = J for j J r. It will be convenient to let I denote the set

{I1,...,m} of indices of a current basis B, and to let Rk., for k e I,

denote the row of the current tableau such that xko xk. Thus, we have

the notational relations

RI = j (i.e., x x jo), j E {,....m}

IR. = J (i.e., xR 0 x J), j E I.

Finally, the sets J and J2 will denote "current partitions" of the

set S (i.e., J. u J2 = S, Jl n J2 = 0). The sense of "current partition"

will become clear in the sequel, for we shall be interested in problems of the

form

max c x, subject to

n
(1) 1 aij x. + = n + i c J1

J=li n+i

n
I a. x +X = b n + i E J

j=l 2- j n-i 2V' n 2

x - 0.
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3. The Algorithm

The modified method, flow charted in Figure ., can be described in 9

steps.

1. InitiaZ Step. Set J2 = E, J = F. Do a phase 1 on (1) to obtain an

initial feasible basis B and corresponding basic feasible solution x.

GO TO 2.

2. If all reduced costs are nonpositive, TERMINATE. Otherwise, choose an

enter column, e, as in the ordinary Simplex method, to be one which has a

maximum reduced cost. Define 81 and TI as follows:

P1 = minI [j/xR e: xR e > 0] = xt/x Rt, t E T V

jCl j j t

That is, TI denotes the set of basic indices which tie for the determination

of aI.

GO TO 3.

3. If T1 -Jl set i = 2 and GO TO 4. Otherwise, select an index

I ' TV obtain a new basis 9 by replacing PI with Pe' and perform a
r r

normal pivot operation on the tableau, including an ordinary transformation

of the values xjo, j = 1,....,M.

Then GO TO 2.

4. Define 0i and Ti as follows:

ei = min - [xj/XR e: XR C> O] - xt/xRte ' t c Ti.

jcl - U T
p=l p

That is, Ti denotes the set of basic indices which tie for the determination

of e 1' If ri r J2 n F - @ then GO TO 5. Otherwise

GO TO 9.
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5. if e :min((x +6 n)/XR e: j i- T], then let i = i + 1 and
5. f i i 1 pal

GO TO 6. Otherwise,

GO TO 9.

6. If Ti_1 n E - 4, GO TO 7. Otherwise,

GO TO 9.

7. If Ti_1 n X -), GO TO 8. Otherwise,

GO TO 9.

8. If U I T. ý I, GO TO 4. Otherwise,
J-1i

GO TO 9.
A

9. Let a a 0i_ = xI /Xre = XrO/Xre for some Ir c T i_. Replace Pr
-I r rer T-

with P to obtain a new basis. The set of new basic indices is
e

I - {I ) u {e}. Obtain new values of the new ,asic variables from the
r

expressions

i- 2
x-ex R xe j I- U T

i-2 p=l

(2) x { X. e + 3j-n' j U T
p=l P

j = e.

A
As always, the nonbasic x are set equal to zero. The new tableau values

A

xj0, j l 1,...,m are given by x J X as determined from (2). Transform

the remainder of the tableau by an ordinary pivot operation. Update the sets

J and J2 according to

i-2
1 = 1 -U T

1 .

i-2

2 = 2 u ( U T ).
pal p

GO TO 2.



11

Remarks on the Algo2Žthm:

(i) Note that in step 5 the subscript j - n is positive since

(Ui-lp Tp) n X - •. This equality holds because the only way to enter step 5

is from step 4 and the only way to enter step 4 is from step 3 or step 8. The

route 3 - 4 - 5 implies i 2 and T1 E Jl" Hence, T1 n X =4 . The

route 8 - 4 ÷ 5 implies i 3 and, from step 7, Tj i X = • for each J

such that 2 < j S i - 1.

(ii) By convention, for i < 3, the set U T is empty. In step 9,
p-i p

for i a 3, U1-2p Tp c J., but Ti 1  r.'ed not be a subset of J1 " The

latter assertion follows from steps 6 and 7. The first assertion is argued

as follows. Suppose step 9 is entered with i = i Then the tests in steps

4, 6 and 7 must have been passed for i = i 0 - 2.

I
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Phase 1 with RHS bI

Initialize Jl' J2

, 1 Change basis.
Check Optimality for Phase 2 <•A
SCompute 01, T1  Define x as

in (2). Transform
Tableau. Up-

Normal Pivot NO YES date J1 and J2"-1

J , J 2are T__c 11

not changed YES<

TT

Ti n -1 2 npF ----------- - e

YES

p

i' = i+lI

.o • • - - -\YES |

NO
'T n E = ________

YES "To

YES

NO il YES I
U T 1 '7 "

Jjl

Figure 1: Flow Chart for Modified Algorithm
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4. Optimality Proof

Theorem: After each pivot operation on the tableau, as prescribed either

in step 3 or in step 9, the current entires xc0, i = 1,...,in, along with

the current values of J and J2, represent a basic feasible solution to

(1).

Proof: It is clear that either in st~p 3 or in step 9 the basis B is

replaced with a new basis 9. The old basic indices I are replaced with the

indices 1r- I - {I u {e). We now show that the current entries xj0 are

A
feasible, j - l,...,m. By definition, this requires a proof that xj a 0,

j E t. Since the pivot operation in step 3 is an ordinary Simplex maneuver,

A
it suffices to consider the values x as prescribed in (2). From step 4,

replacing i with i - 1,

A r i1-2 -A
0 - ei1 min X/ j e: J E I- U T

XRje p-l

From step 5, replacing i with i - 1,

xjen)xi- 2 j

Si_ -< ramin R( x je+Bj e p-iU T •

Thus

i-2
A

x -e8xR.e > 0, jEI- U T
3 ~p=l

i-2
x - e + x j-n -> 0, jE U T

Sp=l P

A A
and e - 0. Consequently x is nonnegative. Finally, given the current

A
values of Jl and J21 we show that x is a solution to (1) and hence, by

the above remarks, a basic feasible solution. We have,
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I-2 x(Xi-Ne)Pj + - (- Jei-n • 'Pe
1-2 i-xR .Pj 1-2 21 X ex+8)Pj

jcI- UT JE U T
pal p pal p

A A
jcl j R + e

+ 6 6 k-n 1 Pk = a x P + P P
i-2 j ii -2 k-n k

k.E U T kc U T
pal P p 1l p

Now let

b = x pip k-n Pk'JEl i-2

kE U T
p=l p

Hence

ibj' n + j E J1

b j=

,b2j, n + j E J2

where J and J2 are the values of the previous partition. In the expression

for b let n + j - k. Hence

S =[ B P n+J'
i-2

n+j c U T
pal p

and

jE 1-2

S . nn+J j U T

0, if not.

We have therefore deduced that
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Im+nj= xj j where • =b+b. That is,

blj + 8. j b2j, n + j e J nI T 3

i-2
Oj = blj, n + j c J - U T

p-i P

i-21
b2J 9 "u + j E J 2 "

From the remarks following the algorithm, U -2T J and therefore
p=l p 1 n

simplifies to

i-2
b j, n + j c J 1 U T

b' n2 (i 2P)"

Corollary: The algorithm terminates in an optimal solution to the problem

P.

Proof: Each tableau represents a basic feasible solution to some problem

of the form (1). Termination can only occur when all reduced costs are non-

negative. From ordinary Simplex theory, this is an optimal tableau for the

problem of form (1) which is currently represented. This implies that we have

reached an optimal solution to problem P. 0
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5. An Example

In Figure 2, a problem with 13 inequality constraints in 2 variables is

illustrated. The solid lines represent the bI and b2 hulls. Each plane

is labeled with the index of the corresponding slack variable. At the initial

point, A, we have

X = {1,21

S ( {3,4 ....... ,15}

E n

F -S

J1 S

J2

The basic indices, 1, are given by {i (3,4}1

e =3

T1 I {5}, T 2 = {6}, T 3 - {71, T 4 ={8), T 5 ={9)
AI = E T = Ti ; i = 5; e5 4 •

r 4 i-l 4

If xj, j - 1,...,15 represents the point A, then point B is given by

A
the coordinates x., j = 1,...,15, where3

A A
xj : - e exR e' j E I - (5,6,7)
x M xj e e J {5,6,7}
Aj j Re+$J2

A 
A

A A
At point B, the nonbasic components x4 and x8 each have the value zero.

Also at point B, we have

J1 - S - {5,6,7)

-2 ( {5,6,71.
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Thus, point B is a basic feasible solution to the problem

max clI + c 2 x2 , subject to

2
j aiJxj + xun+i bli, i E S - {5,6,7}

j=l

2
[ a ij'x + xn+i ' b2 , i = 5,6,7

J=l

xj z O, j = 1,2,...,15.

From point B the modified method takes us to point C, with e 4,

I = 12, i = 5, 9= Q4. It is seen that point C is an optimal solutionr

to the proximate problem. It can be seen that point C is an exact solution,

i.e., an optimal basic feasible solution, to the problem

max c1 xI + c2 x2 , subject to

2
I a lxi + Xn+i = bli, i - 3, 4, 8, 12, 13, 14, 15.

j=l s s nFi 3.

This hull is sketched in Figure 3.

I
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6. N'umerical Experiments

In tills section, we report the outcome of comparisons between the modi-

fied method and the ordinary method on 131 problems. All runs were performed

on the IB11 Model 370/165 Computer. The experimencs involved randomly gener-

ated data with A matrices of four sizes: 25 x 25, 100 x 100, 200 x 150,

and 100 x 200. Table I surmiarizes the input data, where D is a random

number between 0 and 1. In all cases the objective function coefficients

were given by c = 15 + 10D. The right hand side for the ordinary Simplex

runs is denoted by the vector E, and the ordinary runs are designated in

Table I by e = 0. These runs were performed on an in-house all-in-core full

tableau code employing the usual maximum reduced cost criterion for the choice

of enter vector. As a validity check on the in-house code, identical problems

have been run on IRS, the TBM linear programming package, with identical re-

sults to at least 5 decimal places. The modified Simplex algorithm, as elab-

orated in Section 3, was programmed as a special option of the in-house code.

By the choice of test problems, as seen in Table I, an initial feasible basis

of full slack was available for all runs. It was therefore necessary to con-

sider only phase 2 and all reported results are based on starts from the initial

full slack basis. The test problem characteristics were chosen in such a way

at to explore the effects of

(i) the size of A

(ii) the dispersion of the aijis

(iii) the percentage of negative ai 's

(iv) the percentage of zeros in A.

In Table I, Pz denotes the percentage of zeroes in A. These were randomly

assigned to entries in A and remaining entries were then drawn from the

appropriate interval. For each problem type, as defined by a row of Table I,



21

5 randomly generated problems were run, with the exception of the 200 x 150

case. For each of these latter problems only 3 random tests were conducted.

The results are presented in Table II, where

mean computation time in seconds

MI = mean number of iterations

R = mean computation time for modified Simplex divided by mean

computation time for ordinary Simplex.

ERROR = the mean value of 100OBS - OBM where

OBS = optimal objective value obtained with ordinary Simplex (right
hand side b)

OBM = optimal objective value obtained with modified Simplex (given the
appropriate tolerance about b).
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TABLE I: TEST DATA

Run Dim. of A a.ij c Pz(%) bI b2

1 25 x 25 .01 + 1600D 23,490 0 0
2 i" 23,053 .15 b 0 20,000 26,511
3 " " 23,490 .31 g 0 16,200 30,780

4 100 x 100 .01 + 500D 23,490 0 0
5 ' f 23,053 .15 b 0 20,000 26,511
6 " 23,490 .31 b 0 16,200 30,780
7 " " 23,912 .43 5 0 13,630 34,194
8 " 23,490 .80 5 0 4,698 42,282

9 100 x 100 .01 + 500D 23,490 0 25 ---
10 " " " .31 b " 16,200 30,780

11 100 x 100 1 + 50D 23,490 0 0
12 , "it .31 If 16,200 30,780

13 100 x 100 1 + 50D 23,490 0 25
14 " " " .31 5 " 16,200 30,780

15 100 x 100 .01 + 2000D 23,490 0 0
16 t' " " .31 b " 16,200 30,780

17 " i 0 25
18 " I i .31 5 " 16,200 30,780

19 100 x 100 -125 + 500D 23,490 0 0
20 " It ,4 .31 0 0 16,200 30,780

21 100 x 100 -125 + 500D 23,490 0 25
22 " " " .31 I t 16,200 30,780

23 100 x 100 -250 + 1000D 23,490 0 0
24 " " " .31 5 " 16,200 30,780

25 200 x 150 1 + 598D 57,971+ 0 0 ....
14,493D

26 " " " .31 b 0 40,000+ 75,492+
10,OOOD 18,986D

27 100 x 200 .01 + 500D 23,490 0 0
28 " .. .31 b 16,200 30,780
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TABLE II: TEST RESULTS

Run C MT MI R ERROR (%)

1 0 2.5 25 ---
2 .15 b 2.7 18 1.08 3.5
3 .31l 2.5 10 1 7

4 0 63.2 350 ---
5 .15 i 41.2 149 .64 1.9
6 .31 b 25.6 57 .40 3
7 .43 b 20.3 32 .32 9
8 .80 b 15.0 4.4 .24 8.1

9 0 45.5 239 ---
10 .31 b 25.4 73 .55 4.9

11 0 59 333 ---
12 .31 b 19.9 47 .33 4.4

13 0 48.5 242 ---
14 .31 b 26.8 77 .55 5.4

15 0 59.0 346 ---
16 .31 b 23.0 50 .39 2.8

17 0 47.7 240 ---
18 .31 b 23.6 75 .49 5.0

19 0 58.5 321 ---
20 .31 • 38.5 153 .65 2.7

21 0 48.7 252 ---
22 .31 b 34.5 95 .64 5.3

23 0 59.6 335 ---
24 .31 S 39.1 152 .65 2.8

25 0 204 394 ---
26 .31 b 83.5 75 .40 2.9

27 0 151 470 ---
28 .31b 54 69 .35 3.2
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The most meaningful comparison between the modified method and the ordinary

Simplex method is in terms of computation time. On this basis, with respect

to a cetcris par-bus analysis, the results in Table II suggest the following

observations:

1. Increasing the tolerance appears to considerably increase the per-

formance of the modified method, without introducing great relative error in

the optimal objective values (runs 4, 5, 6, 7, 3).

2. For the small 25 x 25 problems, up to a tolerance of ±30%, the

ordinary method was superior to the modified method.

3. For all 100 x 100, 200 x 150 and 100 x 200 runs, the modified

method was superior.

4. For 100 x 100 matrices, the ordinary Simplex performance was inde-

pendent of dispersion on the a ij's and of the percentage of negative a ijIs

(runs 4, 11, 15, 19, 23).

5. For positive matrices (such as runs 6, 11, 15), the modified method

gave its best performance, with a suggestion that tighter dispersion on the

a i'S improves its efficiency. There is a strong suggestion (runs 20 and 24)

that the presence of negative a~j s damps the efficiency of the modified

method and therefore, in view of observation 4 above, decreases its advantage

over the ordinary method. It should be noted that from the geometry of the

modified method it might be intuitively expected to perform best on a Bayes

hull.

6. The addition of zeros to the A matrix uniformly improved the ordi-

nary Simplex performance (compare the Mr values in 4 with 9; 11 with 13; 15

with 17; 19 with 21).

7. The addition of zeros to the A matrix does not alpear to influ-

ence the efficiency of the modified method (compare the MT values in 6 with

10; 12 with 14; 16 with 18, and 20 with 22), but, because of observation 6
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above, the zeros diminish the advantage of the modified method over the ordi-

nary method.

8. Runs 21 and 22, which in this size problem give the poorest relative

advantage to the modified method, tend to support observations 5 and 7. In

runs 21 and 22, the A matrix contained 25% zeros and about 18% negative

coefficients. With the zeros enhancing the ordinary Simplex performance and

the negativities dulling the modified performance the relative advantage (the

R value) is only .7.
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Appendix

There are two possibly interesting special uses for the modified method

which we here briefly describe.

1. Suppose it is desired to obtain a dual feasible tableau for the prob-
T

lem max c x, subject to Ax • E, x a 0. That is, we seek a basis B such

T BTB-l TA T
that, setting c = CB B , we have L A Ž c and u Ž 0. One can obtain

such a basis B by selecting an especially large tolerance (the geometric

distance between the inner and outer hull is the key factor) and using the

modified method to obtain fast convergence to some optimal solution to some

problem (e.g., run 8 in Tables I and II). The final basis will yield feasible

dual variables and the final tableau will be dual feasible for any right hand

side. If it were then desired to use the dual method one would begin with

the first column given by B-1 G.

2. Assume for convenience that all constraints are normalized and sup-
T

pose it is desired to obtain a near optimal solution to the problem max c x,

subject to Ax 5 b 2 , x a 0, within a prespecified objective value accuracy.

In particular, suppose we seek a feasible solution, say x0 , such that

Ax 0  b2 , x a 0, and cTx 0  x cTA c X0 + a for some specified value a,
A T

where x is a true solution to max c x, Ax S b 2 , x - 0. Select a large

tolerance e and let b - b2 - c, bI a b - e. Use the modified method to

obtain fast convergence to an optimal solution to some proximate problem, say

x*, with feasible basis B,. If B*-l2 : 0, then the basic components of

A -1
x are given by B b2. Otherwise, one could proceed with the dual algorithm,

possibly modified for inexact data.
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